Partiële differentiaalvergelijkingen, WIPDV-07 2010/11 semester II b

Examination, June 30th, 2011.

Name
 Student number

Notes:

- You may use one sheet (single side written) with notes from the lectures.
- During the exam it is NOT permitted to consult books, handouts, other notes.
- Numerical/graphic calculators are permitted, symbolic calculators are NOT permited.
- Devices with wireless internet connection and/or document readers are NOT permitted.
- To pass the exam, You need to gather at least half of the total points at the final exam.
- Hint: please describe the solution procedures in full details, not only the results.

TEST (to be returned by $12: 00$)

1. Determine if the following second-order equations are hyperbolic, elliptic, parabolic.
(a) $\left[\right.$ pts 3] $u_{x x}-2 u_{x y}+u_{y y}=0$
(b) $\left[\right.$ pts 3] $3 u_{x x}+u_{x y}+u_{y y}=0$
(c) $\left[\right.$ pts 4] $a u_{x x}+a u_{x y}+u_{y y}=0, a$ integer
2. Consider the initial value problem

$$
x u_{x}+2 y u_{y}+u_{t}=3 u, \quad u(x, y, 0)=f(x, y)
$$

(a) [pts 2] Write the characteristic equations for this problem.
(b) [pts 5] Find all solutions of the initial value problem using the method of characteristics.
(c) [pts 3] Consider the special case where the function f is defined as follow

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(v, w)=v+w .
$$

Write the particular solution of the initial value problem for this special case and verify that the solution satisfies the initial value problem.
3. [pts 8] Find all separable solutions $u=F(x) G(y) H(z)$ of the equation $u_{x}-u_{y}+u_{z}=0$.

The boundary conditions are not given.
4. (a) [pts 2] Write the Fourier Sine Series of $f(x)=x^{3}-x$ on $[0,1]$.
(b) [pts 5] Show that the nth coefficient of the Fourier Sine Series at point (a) has the expression

$$
\frac{12}{n^{3} \pi^{3}}(-1)^{n}
$$

(c) [pts 3] Evaluate the series found in (a)-(b) at $x=1 / 2$ and show that you obtain

$$
\frac{\pi^{3}}{32}=1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\cdots
$$

(d) [pts 5] Apply Parseval's identity to your answer in (a)-(b) and show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

5. (a) [pts 6] Solve the wave equation $u_{t t}=c^{2} u_{x x}$ on the whole real line in the case that the initial position $\phi(x)$ of the string is $\phi(x)=x^{2}$, and the initial velocity $\psi(x)$ is $\psi(x)=x+1$.
(b) [pts 4] Draw graphically the domain of dependence of the solution u at the point $\left(x_{0}, t_{0}\right)=(2,1)$ in the case $c=1$.
6. (a) [pts 2] Recall the definition of harmonic function.
(b) [pts 3] Verify that $u(x, y)=e^{y} \cos x$ is harmonic for all (x, y).
(c) [pts 5] Use the mean value property to show that

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\sin t} \cos (\cos t)\right) d t=1
$$

(d) [pts 5] Find the maximum and minimum values of $u(x, y)=e^{y} \cos x$ for (x, y) in the rectangular region where $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and $-1 \leq y \leq 1$.
7. (a) [pts 3] Recall the two Green's identities.
(b) [pts 5] Suppose that $A \subset \mathbb{R}^{n}$ is a bounded region and that $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $\Delta u(x)=\lambda u(x)$, when $x \in A$, and $u(x)=0$ when $x \in \partial A$ (boundary of A).
Using the Green's identities, show that u must be identically zero if $\lambda \geq 0$.

